Как используются теория вероятностей и математическая статистика? Эти дисциплины – основа вероятностно-статистических методов принятия решений. Чтобы воспользоваться их математическим аппаратом, необходимо задачи принятия решений выразить в терминах вероятностно-статистических моделей. Применение конкретного вероятностно-статистического метода принятия решений состоит из трех этапов:

Переход от экономической, управленческой, технологической реальности к абстрактной математико-статистической схеме, т.е. построение вероятностной модели системы управления, технологического процесса, процедуры принятия решений, в частности по результатам статистического контроля, и т.п.

Проведение расчетов и получение выводов чисто математическими средствами в рамках вероятностной модели;

Интерпретация математико-статистических выводов применительно к реальной ситуации и принятие соответствующего решения (например, о соответствии или несоответствии качества продукции установленным требованиям, необходимости наладки технологического процесса и т.п.), в частности, заключения (о доле дефектных единиц продукции в партии, о конкретном виде законов распределения контролируемых параметров технологического процесса и др.).

Математическая статистика использует понятия, методы и результаты теории вероятностей. Рассмотрим основные вопросы построения вероятностных моделей принятия решений в экономических, управленческих, технологических и иных ситуациях. Для активного и правильного использования нормативно-технических и инструктивно-методических документов по вероятностно-статистическим методам принятия решений нужны предварительные знания. Так, необходимо знать, при каких условиях следует применять тот или иной документ, какую исходную информацию необходимо иметь для его выбора и применения, какие решения должны быть приняты по результатам обработки данных и т.д.

Примеры применения теории вероятностей и математической статистики. Рассмотрим несколько примеров, когда вероятностно-статистические модели являются хорошим инструментом для решения управленческих, производственных, экономических, народнохозяйственных задач. Так, например, в романе А.Н.Толстого «Хождение по мукам» (т.1) говорится: «мастерская дает двадцать три процента брака, этой цифры вы и держитесь, - сказал Струков Ивану Ильичу».

Встает вопрос, как понимать эти слова в разговоре заводских менеджеров, поскольку одна единица продукции не может быть дефектна на 23%. Она может быть либо годной, либо дефектной. Наверно, Струков имел в виду, что в партии большого объема содержится примерно 23% дефектных единиц продукции. Тогда возникает вопрос, а что значит «примерно»? Пусть из 100 проверенных единиц продукции 30 окажутся дефектными, или из 1000 – 300, или из 100000 – 30000 и т.д., надо ли обвинять Струкова во лжи?

Или другой пример. Монетка, которую используют как жребий, должна быть «симметричной», т.е. при ее бросании в среднем в половине случаев должен выпадать герб, а в половине случаев – решетка (решка, цифра). Но что означает «в среднем»? Если провести много серий по 10 бросаний в каждой серии, то часто будут встречаться серии, в которых монетка 4 раза выпадает гербом. Для симметричной монеты это будет происходить в 20,5% серий. А если на 100000 бросаний окажется 40000 гербов, то можно ли считать монету симметричной? Процедура принятия решений строится на основе теории вероятностей и математической статистики.

Рассматриваемый пример может показаться недостаточно серьезным. Однако это не так. Жеребьевка широко используется при организации промышленных технико-экономических экспериментов, например, при обработке результатов измерения показателя качества (момента трения) подшипников в зависимости от различных технологических факторов (влияния консервационной среды, методов подготовки подшипников перед измерением, влияния нагрузки подшипников в процессе измерения и т.п.). Допустим, необходимо сравнить качество подшипников в зависимости от результатов хранения их в разных консервационных маслах, т.е. в маслах состава А и В . При планировании такого эксперимента возникает вопрос, какие подшипники следует поместить в масло состава А , а какие – в масло состава В , но так, чтобы избежать субъективизма и обеспечить объективность принимаемого решения.

Ответ на этот вопрос может быть получен с помощью жребия. Аналогичный пример можно привести и с контролем качества любой продукции. Чтобы решить, соответствует или не соответствует контролируемая партия продукции установленным требованиям, из нее отбирается выборка. По результатам контроля выборки делается заключение о всей партии. В этом случае очень важно избежать субъективизма при формировании выборки, т.е необходимо, чтобы каждая единица продукции в контролируемой партии имела одинаковую вероятность быть отобранной в выборку. В производственных условиях отбор единиц продукции в выборку обычно осуществляют не с помощью жребия, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.

Аналогичные проблемы обеспечения объективности сравнения возникают при сопоставлении различных схем организации производства, оплаты труда, при проведении тендеров и конкурсов, подбора кандидатов на вакантные должности и т.п. Всюду нужна жеребьевка или подобные ей процедуры. Поясним на примере выявления наиболее сильной и второй по силе команды при организации турнира по олимпийской системе (проигравший выбывает). Пусть всегда более сильная команда побеждает более слабую. Ясно, что самая сильная команда однозначно станет чемпионом. Вторая по силе команда выйдет в финал тогда и только тогда, когда до финала у нее не будет игр с будущим чемпионом. Если такая игра будет запланирована, то вторая по силе команда в финал не попадет. Тот, кто планирует турнир, может либо досрочно «выбить» вторую по силе команду из турнира, сведя ее в первой же встрече с лидером, либо обеспечить ей второе место, обеспечив встречи с более слабыми командами вплоть до финала. Чтобы избежать субъективизма, проводят жеребьевку. Для турнира из 8 команд вероятность того, что в финале встретятся две самые сильные команды, равна 4/7. Соответственно с вероятностью 3/7 вторая по силе команда покинет турнир досрочно.

При любом измерении единиц продукции (с помощью штангенциркуля, микрометра, амперметра и т.п.) имеются погрешности. Чтобы выяснить, есть ли систематические погрешности, необходимо сделать многократные измерения единицы продукции, характеристики которой известны (например, стандартного образца). При этом следует помнить, что кроме систематической погрешности присутствует и случайная погрешность.

Поэтому встает вопрос, как по результатам измерений узнать, есть л систематическая погрешность. Если отмечать только, является ли полученная при очередном измерении погрешность положительной или отрицательной, то эту задачу можно свести к предыдущей. Действительно, сопоставим измерение с бросанием монеты, положительную погрешность – с выпадением герба, отрицательную – решетки (нулевая погрешность при достаточном числе делений шкалы практически никогда не встречается). Тогда проверка отсутствия систематической погрешности эквивалентна проверке симметричности монеты.

Целью этих рассуждений является сведение задачи проверки отсутствия систематической погрешности к задаче проверки симметричности монеты. Проведенные рассуждения приводят к так называемому «критерию знаков» в математической статистике.

При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов и принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приемочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений, на основе которых можно ответить на поставленные выше вопросы. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез, в частности, гипотез о том, что доля дефектных единиц продукции равна определенному числу р 0 , например, р 0 = 0,23 (вспомните слова Струкова из романа А.Н.Толстого).

Задачи оценивания. В ряде управленческих, производственных, экономических, народнохозяйственных ситуаций возникают задачи другого типа – задачи оценки характеристик и параметров распределений вероятностей.

Рассмотрим пример. Пусть на контроль поступила партия из N электроламп. Из этой партии случайным образом отобрана выборка объемом n электроламп. Возникает ряд естественных вопросов. Как по результатам испытаний элементов выборки определить средний срок службы электроламп и с какой точностью можно оценить эту характеристику? Как изменится точность, если взять выборку большего объема? При каком числе часов Т можно гарантировать, что не менее 90% электроламп прослужат Т и более часов?

Предположим, что при испытании выборки объемом n электроламп дефектными оказались Х электроламп. Тогда возникают следующие вопросы. Какие границы можно указать для числа D дефектных электроламп в партии, для уровня дефектности D / N и т.п.?

Или при статистическом анализе точности и стабильности технологических процессов надлежит оценить такие показатели качества, как среднее значение контролируемого параметра и степень его разброса в рассматриваемом процессе. Согласно теории вероятностей в качестве среднего значения случайной величины целесообразно использовать ее математическое ожидание, а в качестве статистической характеристики разброса – дисперсию, среднее квадратическое отклонение или коэффициент вариации. Отсюда возникает вопрос: как оценить эти статистические характеристики по выборочным данным и с какой точностью это удается сделать? Аналогичных примеров можно привести очень много. Здесь важно было показать, как теория вероятностей и математическая статистика могут быть использованы в производственном менеджменте при принятии решений в области статистического управления качеством продукции.

Что такое «математическая статистика»? Под математической статистикой понимают «раздел математики, посвященный математическим методам сбора, систематизации, обработки и интерпретации статистических данных, а также использование их для научных или практических выводов. Правила и процедуры математической статистики опираются на теорию вероятностей, позволяющую оценить точность и надежность выводов, получаемых в каждой задаче на основании имеющегося статистического материала» . При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками.

По типу решаемых задач математическая статистика обычно делится на три раздела: описание данных, оценивание и проверка гипотез.

По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

Одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;

Многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);

Статистика случайных процессов и временных рядов, где результат наблюдения – функция;

Статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

Исторически первой появились некоторые области статистики объектов нечисловой природы (в частности, задачи оценивания доли брака и проверки гипотез о ней) и одномерная статистика. Математический аппарат для них проще, поэтому на их примере обычно демонстрируют основные идеи математической статистики.

Лишь те методы обработки данных, т.е. математической статистики, являются доказательными, которые опираются на вероятностные модели соответствующих реальных явлений и процессов. Речь идет о моделях поведения потребителей, возникновения рисков, функционирования технологического оборудования, получения результатов эксперимента, течения заболевания и т.п. Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей. Соответствие вероятностной модели реальности, т.е. ее адекватность, обосновывают, в частности, с помощью статистических методов проверки гипотез.

Невероятностные методы обработки данных являются поисковыми, их можно использовать лишь при предварительном анализе данных, так как они не дают возможности оценить точность и надежность выводов, полученных на основании ограниченного статистического материала.

Вероятностные и статистические методы применимы всюду, где удается построить и обосновать вероятностную модель явления или процесса. Их применение обязательно, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции).

В конкретных областях применений используются как вероятностно-статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим методам относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

Широко применяются такие прикладные вероятностно-статистические дисциплины, как теория надежности и теория массового обслуживания. Содержание первой из них ясно из названия, вторая занимается изучением систем типа телефонной станции, на которую в случайные моменты времени поступают вызовы - требования абонентов, набирающих номера на своих телефонных аппаратах. Длительность обслуживания этих требований, т.е. длительность разговоров, также моделируется случайными величинами. Большой вклад в развитие этих дисциплин внесли член-корреспондент АН СССР А.Я. Хинчин (1894-1959), академик АН УССР Б.В.Гнеденко (1912-1995) и другие отечественные ученые.

Коротко об истории математической статистики. Математическая статистика как наука начинается с работ знаменитого немецкого математика Карла Фридриха Гаусса (1777-1855), который на основе теории вероятностей исследовал и обосновал метод наименьших квадратов, созданный им в 1795 г. и примененный для обработки астрономических данных (с целью уточнения орбиты малой планеты Церера). Его именем часто называют одно из наиболее популярных распределений вероятностей – нормальное, а в теории случайных процессов основной объект изучения – гауссовские процессы.

В конце XIX в. – начале ХХ в. крупный вклад в математическую статистику внесли английские исследователи, прежде всего К.Пирсон (1857-1936) и Р.А.Фишер (1890-1962). В частности, Пирсон разработал критерий «хи-квадрат» проверки статистических гипотез, а Фишер – дисперсионный анализ, теорию планирования эксперимента, метод максимального правдоподобия оценки параметров.

В 30-е годы ХХ в. поляк Ежи Нейман (1894-1977) и англичанин Э.Пирсон развили общую теорию проверки статистических гипотез, а советские математики академик А.Н. Колмогоров (1903-1987) и член-корреспондент АН СССР Н.В.Смирнов (1900-1966) заложили основы непараметрической статистики. В сороковые годы ХХ в. румын А. Вальд (1902-1950) построил теорию последовательного статистического анализа.

Математическая статистика бурно развивается и в настоящее время. Так, за последние 40 лет можно выделить четыре принципиально новых направления исследований :

Разработка и внедрение математических методов планирования экспериментов;

Развитие статистики объектов нечисловой природы как самостоятельного направления в прикладной математической статистике;

Развитие статистических методов, устойчивых по отношению к малым отклонениям от используемой вероятностной модели;

Широкое развертывание работ по созданию компьютерных пакетов программ, предназначенных для проведения статистического анализа данных.

Вероятностно-статистические методы и оптимизация. Идея оптимизации пронизывает современную прикладную математическую статистику и иные статистические методы. А именно, методы планирования экспериментов, статистического приемочного контроля, статистического регулирования технологических процессов и др. С другой стороны, оптимизационные постановки в теории принятия решений, например, прикладная теория оптимизации качества продукции и требований стандартов, предусматривают широкое использование вероятностно-статистических методов, прежде всего прикладной математической статистики.

В производственном менеджменте, в частности, при оптимизации качества продукции и требований стандартов особенно важно применять статистические методы на начальном этапе жизненного цикла продукции, т.е. на этапе научно-исследовательской подготовки опытно-конструкторских разработок (разработка перспективных требований к продукции, аванпроекта, технического задания на опытно-конструкторскую разработку). Это объясняется ограниченностью информации, доступной на начальном этапе жизненного цикла продукции, и необходимостью прогнозирования технических возможностей и экономической ситуации на будущее. Статистические методы должны применяться на всех этапах решения задачи оптимизации – при шкалировании переменных, разработке математических моделей функционирования изделий и систем, проведении технических и экономических экспериментов и т.д.

В задачах оптимизации, в том числе оптимизации качества продукции и требований стандартов, используют все области статистики. А именно, статистику случайных величин, многомерный статистический анализ, статистику случайных процессов и временных рядов, статистику объектов нечисловой природы. Выбор статистического метода для анализа конкретных данных целесообразно проводить согласно рекомендациям .

В настоящей лекции представлена систематизация отечественных и зарубежных методов и моделей анализа риска. Различают следующие методы анализа риска (рис. 3): детерминированные; вероятностно-статистические (статистические, теоретико-вероятностные и вероятностно-эвристические); в условиях неопределенности нестатистической природы (нечеткие и нейросетевые); комбинированные, включающие различные комбинации перечисленных выше методов (детерминированных и вероятностных; вероятностных и нечетких; детерминированных и статистических).

Детерминированные методы предусматривают анализ этапов развития аварий, начиная от исходного события через последовательность предполагаемых отказов до установившегося конечного состояния. Ход аварийного процесса изучается и предсказывается с помощью математических имитационных моделей. Недостатками метода являются: потенциальная возможность упустить редко реализующиеся, но важные цепочки развития аварий; сложность построения достаточно адекватных математических моделей; необходимость проведения сложных и дорогостоящих экспериментальных исследований.

Вероятностно-статистические методы анализа риска предполагают как оценку вероятности возникновения аварии, так и расчет относительных вероятностей того или иного пути развития процессов. При этом анализируются разветвленные цепочки событий и отказов, выбирается подходящий математический аппарат и оценивается полная вероятность аварии. Расчетные математические модели при этом можно существенно упростить по сравнению с детерминированными методами. Основные ограничения метода связаны с недостаточной статистикой по отказам оборудования. Кроме того, применение упрощенных расчетных схем снижает достоверность получаемых оценок риска для тяжелых аварий. Тем не менее, вероятностный метод в настоящее время считается одним из наиболее перспективных. На его основе построены различные методики оценки рисков , которые в зависимости от имеющейся исходной информации делятся на:

Статистические, когда вероятности определяются по имеющимся статистическим данным (при их наличии);

Теоретико-вероятностные, используемые для оценки рисков от редких событий, когда статистика практически отсутствует;

Вероятностно-эвристические, основанные на использовании субъективных вероятностей, получаемых с помощью экспертного оценивания. Используются при оценке комплексных рисков от совокупности опасностей, когда отсутствуют не только статистические данные, но и математические модели (или их точность слишком низка).



Методы анализа риска в условиях неопределенностей нестатистической природы предназначены для описания неопределенностей источника риска – ХОО, связанных с отсутствием или неполнотой информации о процессах возникновения и развития аварии; человеческими ошибками; допущениями применяемых моделей для описания развития аварийного процесса.

Все перечисленные выше методы анализа риска классифицируют по характеру исходной и результирующей информации на качественные и количественные .


Рис. 3. Классификация методов анализа риска

Методы количественного анализа риска характеризуются расчетом показателей риска. Проведение количественного анализа требует высокой квалификации исполнителей, большого объема информации по аварийности, надежности оборудования, учета особенностей окружающей местности, метеоусловий, времени пребывания людей на территории и вблизи объекта, плотности населения и других факторов.

Сложные и дорогостоящие расчеты зачастую дают значение риска, точность которого невелика. Для опасных производственных объектов точность расчетов индивидуального риска, даже в случае наличия всей необходимой информации, не выше одного порядка. При этом проведение количественной оценки риска более полезно для сравнения различных вариантов (например, размещения оборудования), чем для заключения о степени безопасности объекта. Зарубежный опыт показывает, что наибольший объем рекомендаций по обеспечению безопасности вырабатывается с применением качественных методов анализа риска, использующих меньший объем информации и затрат труда. Однако количественные методы оценки риска всегда очень полезны, а в некоторых ситуациях – единственно допустимы для сравнения опасностей различной природы и при экспертизе опасных производственных объектов.



К детерминированным методам относят следующие:

- качественные (проверочного листа (Check-list); “Что будет если?” (What - If); Предварительный анализ опасности (Process Hazard and Analysis) (PHA); “Анализ вида и последствий отказов” (АВПО) (Failure Mode and Effects Analysis) (FMEA); Анализ ошибочных действий (Action Errors Analysis) (AEA); Концептуальный анализ риска (Concept Hazard Analysis) (CHA); Концептуальный обзор безопасности (Concept Safety Review) (CSR); Анализ человеческих ошибок (Human Hazard and Operability) (HumanHAZOP); Анализ влияния человеческого фактора (Human Reliability Analysis) (HRA) и ошибки персонала (Human Errors or Interactions) (HEI); Логического анализа;

- количественные (Методы, основанные на распознавании образов (кластерный анализ); Ранжирование (экспертные оценки); Методика определения и ранжирования риска (Hazard Identification and Ranking Analysis) (HIRA); Анализ вида, последствий и критичности отказа (АВПКО) (Failure Mode, Effects and Critical Analysis) (FMECA); Методика анализа эффекта домино (Methodology of domino effects analysis); Методика определения и оценки потенциального риска (Methods of potential risk determination and evaluation)); Количественное определение влияния на надежность человеческого фактора (Human Reliability Quantification) (HRQ).

К вероятностно-статистическим методам относятся:

Статистические: качественные методы (карты потоков) и количественные методы (контрольные карты).

К теоретико-вероятностным методам относятся:

- качественные (Причины последовательности несчастных случаев (Accident Sequences Precursor) (ASP));

- количественные (Анализ деревьев событий) (АДС) (Event Tree Analysis) (ETA); Анализ деревьев отказов (АДО) (Fault Tree Analysis) (FTA); Оценка риска минимальных путей от инициирующего до основного события (Short Cut Risk Assessment) (SCRA); Дерево решений; Вероятностная оценка риска ХОО.

К вероятностно-эвристическим методам относятся:

- качественные – экспертного оценивания, метод аналогий;

- количественные – балльных оценок, субъективных вероятностей оценки опасных состояний, согласования групповых оценок и т.п.

Вероятностно-эвристические методы используются при недостатке статистических данных и в случае редких событий, когда возможности применения точных математических методов ограничены из-за отсутствия достаточной статистической информации о показателях надежности и технических характеристиках систем, а также из-за отсутствия надежных математических моделей, описывающих реальное состояние системы. Вероятностно-эвристические методы основываются на использовании субъективных вероятностей, получаемых с помощью экспертного оценивания.

Выделяют два уровня использования экспертных оценок: качественный и количественный. На качественном уровне определяются возможные сценарии развития опасной ситуации из-за отказа системы, выбор окончательного варианта решения и др. Точность количественных (балльных) оценок зависит от научной квалификации экспертов, их способностей оценивать те или иные состояния, явления, пути развития ситуации. Поэтому при проведении экспертных опросов для решения задач анализа и оценки риска необходимо использовать методы согласования групповых решений на основе коэффициентов конкордации; построения обобщенных ранжировок по индивидуальным ранжировкам экспертов с использованием метода парных сравнений и другие. Для анализа различных источников опасности химических производств методы на основе экспертных оценок могут использоваться для построения сценариев развития аварий, связанных с отказами технических средств, оборудования и установок; для ранжирования источников опасности.

К методам анализа риска в условиях неопределенности нестатистической природы относятся:

- нечеткие качественные (Метод анализа опасности и работоспособности (АОР) (Hazard and Operability Study) (HAZOP)и Методы, основанные на распознавании образов (нечеткая логика));

- нейросетевые методы прогнозирования отказов технических средств и систем, технологических нарушений и отклонений состояний технологических параметров процессов; поиска управляющих воздействий, направленных на предотвращение возникновения аварийных ситуаций, и идентификации предаварийных ситуаций на химически опасных объектах.

Заметим, что анализ неопределенностей в процессе оценки риска – это перевод неопределенности исходных параметров и предположений, использованных при оценке риска в неопределенности результатов.

Для достижения желаемого результата освоения дисциплины, будут подробно рассмотрены на практических занятиях следующие СМММ СТО:

1. Основы вероятностных методов анализа и моделирования СС;

2. Статистические математические метолы и модели сложных систем;

3. Основы теории информации;

4. Методы оптимизации;

Заключительная часть. (В заключительной части подводится краткий итог лекции и даются рекомендации по самостоятельной работе для углубления, расширения и практического применения знаний по данной теме).

Таким образом, были рассмотрены основные понятия и определения техносферы, системный анализ сложных систем и различные способы решения задач проектирования сложных техносферных систем и объектов.

Практическое занятие по данной теме будет посвящено примерам проектов сложных систем с использованием системного и вероятностного подходов.

В конце занятия преподаватель отвечает на вопросы по материалу лекции и объявляет задание на самоподготовку:

2) доработать конспект лекции примерами систем большого масштаба: транспорт, связь, промышленность, коммерция, системами видеонаблюдения и системы глобального контроля за лесными пожарами.

Разработал:

доцент кафедры О.М. Медведева


Лист регистрации изменений

Что такое «математическая статистика»

Под математической статистикой понимают «раздел математики, посвященный математическим методам сбора, систематизации, обработки и интерпретации статистических данных, а также использование их для научных или практических выводов. Правила и процедуры математической статистики опираются на теорию вероятностей, позволяющую оценить точность и надежность выводов, получаемых в каждой задаче на основании имеющегося статистического материала». При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками.

По типу решаемых задач математическая статистика обычно делится на три раздела: описание данных, оценивание и проверка гипотез.

По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

  • - одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;
  • - многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);
  • - статистика случайных процессов и временных рядов, где результат наблюдения - функция;
  • - статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

Исторически первой появились некоторые области статистики объектов нечисловой природы (в частности, задачи оценивания доли брака и проверки гипотез о ней) и одномерная статистика. Математический аппарат для них проще, поэтому на их примере обычно демонстрируют основные идеи математической статистики.

Лишь те методы обработки данных, т.е. математической статистики, являются доказательными, которые опираются на вероятностные модели соответствующих реальных явлений и процессов. Речь идет о моделях поведения потребителей, возникновения рисков, функционирования технологического оборудования, получения результатов эксперимента, течения заболевания и т.п. Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей. Соответствие вероятностной модели реальности, т.е. ее адекватность, обосновывают, в частности, с помощью статистических методов проверки гипотез.

Невероятностные методы обработки данных являются поисковыми, их можно использовать лишь при предварительном анализе данных, так как они не дают возможности оценить точность и надежность выводов, полученных на основании ограниченного статистического материала.

Вероятностные и статистические методы применимы всюду, где удается построить и обосновать вероятностную модель явления или процесса. Их применение обязательно, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции).

В конкретных областях применений используются как вероятностно-статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим методам относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

Широко применяются такие прикладные вероятностно-статистические дисциплины, как теория надежности и теория массового обслуживания. Содержание первой из них ясно из названия, вторая занимается изучением систем типа телефонной станции, на которую в случайные моменты времени поступают вызовы - требования абонентов, набирающих номера на своих телефонных аппаратах. Длительность обслуживания этих требований, т.е. длительность разговоров, также моделируется случайными величинами. Большой вклад в развитие этих дисциплин внесли член-корреспондент АН СССР А.Я. Хинчин (1894-1959), академик АН УССР Б.В.Гнеденко (1912-1995) и другие отечественные ученые.

Во многих случаях в горной науке необходимо исследовать не только детерминированные, но и случайные процессы. Все геомеханические процессы протекают в непрерывно изменяющихся условиях, когда те или иные события могут произойти, а могут и не произойти. При этом возникает необходимость анализировать случайные связи.

Несмотря на случайный характер событий, они подчиняются определенным закономерностям, рассматриваемым в теории вероятностей , которая изучает теоретические распределения случайных величин и их характеристики. Способами обработки и анализа случайных эмпирических событий занимается другая наука, так называемая математическая статистика. Эти две родственные науки составляют единую математическую теорию массовых случайных процессов, широко применяемую в научных исследованиях.

Элементы теории вероятностей и матстатистики. Под совокупностью понимают множество однородных событий случайной величины х , которая составляет первичный статистический материал. Совокупность может быть генеральной (большая выборка N ), содержащей самые различные варианты массового явления, и выборочной (малая выборка N 1), представляющей собой лишь часть генеральной совокупности.

Вероятностью Р (х ) события х называют отношение числа случаев N (х ), которые приводят к наступлению события х , к общему числу возможных случаев N :

В математической статистике аналогом вероятности является понятие частости события , представляющей собой отношение числа случаев , при которых имело место событие, к общему числу событий:

При неограниченном возрастании числа событий частость стремится к вероятности Р (х ).



Допустим, имеются какие-то статистические данные, представленные в виде ряда распределения (гистограммы) на рис. 4.11, тогда частость характеризует вероятность появления случайной величины в интервале і , а плавная кривая носит название функции распределения.

Вероятность случайной величины – это количественная оценка возможности ее появления. Достоверное событие имеет Р =1, невозможное событие – Р =0. Следовательно, для случайного события , а сумма вероятностей всех возможных значений .

В исследованиях недостаточно иметь кривую распределения , а необходимо знать и ее характеристики:

а) среднеарифметическое – ; (4.53)

б) размах – R = x max – x min , который можно использовать для ориентировочной оценки вариации событий, где x max и x min – экстремальные значения измеренной величины;

в) математическое ожидание – . (4.54)

Для непрерывных случайных величин математическое ожидание записывается в виде

, (4.55)

т.е. равно действительному значению наблюдаемых событий х , а соответствующая матожиданию абсцисса называется центром распределения.

г) дисперсия – , (4.56)

которая характеризует рассеяние случайной величины по отношению к математическому ожиданию. Дисперсию случайной величины иначе еще называют центральным моментом второго порядка.

Для непрерывной случайной величины дисперсия равна

; (4.57)

д) среднеквадратичное отклонение или стандарт –

е) коэффициент вариации (относительное рассеяние) –

, (4.59)

который характеризует интенсивность рассеяния в различных совокупностях и применяется для их сравнения.

Площадь, расположенная под кривой распределения , соответствует единице, это означает, что кривая охватывает все значения случайных величин. Однако таких кривых, которые будут иметь площадь, равную единице, можно построить большое количество, т.е. они могут иметь различное рассеяние. Мерой рассеяния и является дисперсия или среднеквадратичное отклонение (рис. 4.12).


Выше мы рассмотрели основные характеристики теоретической кривой распределения, которые анализирует теория вероятностей. В статистике оперируют эмпирическими распределениями, а основной задачей статистики является подбор теоретических кривых по имеющемуся эмпирическому закону распределения.

Пусть в результате n измерений случайной величины получен вариационный ряд х 1 , х 2 , х 3 , … х n . Обработка таких рядов сводится к следующим операциям:

– группируют х і в интервале и устанавливают для каждого из них абсолютную и относительные частости ;

– по значениям строят ступенчатую гистограмму (рис. 4.11);

– вычисляют характеристики эмпирической кривой распределения: среднеарифметическое дисперсию Д = ; среднеквадратичное отклонение .

Значениям , Д и s эмпирического распределения соответствуют величины , Д (х ) и s (х ) теоретического распределения.



Рассмотрим основные теоретические кривые распределения. Наиболее часто в исследованиях применяют закон нормального распределения (рис. 4.13), уравнение которого при имеет вид:

(4.60)

Если совместить ось координат с точкой m , т.е. принять m (x )=0 и принять , закон нормального распределения будет описываться более простым уравнением:

Для оценки рассеяния обычно пользуются величиной . Чем меньше s ,тем меньше рассеяние, т.е. наблюдения мало отличается друг от друга. С увеличением s рассеяние возрастает, вероятность погрешностей увеличивается, а максимум кривой (ордината), равный , уменьшается. Поэтому значение у =1/ при 1 называют мерой точности. Среднеквадратичные отклонения и соответствуют точкам перегиба (заштрихованная область на рис. 4.12) кривой распределения.

При анализе многих случайных дискретных процессов используют распределение Пуассона (краткосрочные события, протекающие в единицу времени). Вероятность появления чисел редких событий х =1, 2, … за данный отрезок времени выражается законом Пуассона (см. рис. 4.14):

, (4.62)

где х – число событий за данный отрезок времени t ;

λ – плотность, т.е. среднее число событий за единицу времени;

– среднее число событий за время t ;

Для закона Пуассона дисперсия равна математическому ожиданию числа наступления событий за время t , т.е. .

Для исследования количественных характеристик некоторых процессов (времени отказов машин и т.д.) применяют показательный закон распределения (рис. 4.15), плотность распределения которого выражается зависимостью

где λ – интенсивность (среднее число) событий в единицу времени.

В показательном распределении интенсивность λ является величиной, обратной математическому ожиданию λ = 1/m (x ). Кроме того, справедливо соотношение .

В различных областях исследований широко применяется закон распределения Вейбулла (рис. 4.16):

, (4.64)

где n , μ , – параметры закона; х – аргумент, чаще всего время.

Исследуя процессы, связанные с постепенным снижением параметров (снижением прочности пород во времени и т.д.), применяют закон гамма-распределения (рис. 4.17):

, (4.65)

где λ , a – параметры. Если a =1, гамма функции превращается в показательный закон.

Кроме приведенных выше законов применяют и другие виды распределений: Пирсона, Рэлея, бета – распределение и пр.

Дисперсионный анализ. В исследованиях часто возникает вопрос: В какой мере влияет тот или иной случайный фактор на исследуемый процесс? Методы установления основных факторов и их влияние на исследуемый процесс рассматриваются в специальном разделе теории вероятностей и математической статистики – дисперсионном анализе. Различают одно – и многофакторный анализ. Дисперсионный анализ основывается на использовании нормального закона распределения и на гипотезе, что центры нормальных распределений случайных величин равны. Следовательно, все измерения можно рассматривать как выборку из одной и той же нормальной совокупности.

Теория надежности. Методы теории вероятностей и математической статистики часто применяют в теории надежности, которая широко используется в различных отраслях науки и техники. Под надежностью понимают свойство объекта выполнять заданные функции (сохранять установленные эксплуатационные показатели) в течение требуемого периода времени. В теории надежности отказы рассматриваются как случайные события. Для количественного описания отказов применяют математические модели – функции распределения интервалов времени (нормальное и экспоненциальное распределение, Вейбулла, гамма-распределения). Задача состоит в нахождении вероятностей различных показателей.

Метод Монте-Карло. Для исследования сложных процессов вероятностного характера применяют метод Монте-Карло.С помощью этого метода решают задачи по нахождению наилучшего решения из множества рассматриваемых вариантов.

Метод Монте-Карло иначе еще называют методом статистического моделирования. Это численный метод, он основан на использовании случайных чисел, моделирующих вероятностные процессы. Математической основой метода является закон больших чисел, который формулируется следующим образом: при большом числе статистических испытаний вероятность того, что среднеарифметическое значение случайной величины стремится к ее математическому ожиданию , равна 1:

, (4.64)

где ε – любое малое положительное число.

Последовательность решения задач методом Монте-Карло:

– сбор, обработка и анализ статистических наблюдений;

– отбор главных и отбрасывание второстепенных факторов и составление математической модели;

– составление алгоритмов и решение задач на ЭВМ.

Для решения задач методом Монте-Карло необходимо иметь статистический ряд, знать закон его распределения, среднее значение , математическое ожидание и среднеквадратичное отклонение. Решение эффективно лишь с использованием ЭВМ.

Часть 1. Фундамент прикладной статистики

1.2.3. Суть вероятностно-статистических методов принятия решений

Как подходы, идеи и результаты теории вероятностей и математической статистики используются при принятии решений?

Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются прежде всего для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду как нежелательные возможности (риски), так и привлекательные («счастливый случай»). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя. Например, по вероятности выпадения герба можно рассчитать вероятность того, что при 10 бросаниях монет выпадет не менее 3 гербов. Подобный расчет опирается на вероятностную модель, согласно которой бросания монет описываются схемой независимых испытаний, кроме того, выпадения герба и решетки равновозможны, а потому вероятность каждого из этих событий равна ½. Более сложной является модель, в которой вместо бросания монеты рассматривается проверка качества единицы продукции. Соответствующая вероятностная модель опирается на предположение о том, что контроль качества различных единиц продукции описывается схемой независимых испытаний. В отличие от модели с бросанием монет необходимо ввести новый параметр – вероятность р того, что единица продукции является дефектной. Модель будет полностью описана, если принять, что все единицы продукции имеют одинаковую вероятность оказаться дефектными. Если последнее предположение неверно, то число параметров модели возрастает. Например, можно принять, что каждая единица продукции имеет свою вероятность оказаться дефектной.

Обсудим модель контроля качества с общей для всех единиц продукции вероятностью дефектности р . Чтобы при анализе модели «дойти до числа», необходимо заменить р на некоторое конкретное значение. Для этого необходимо выйти из рамок вероятностной модели и обратиться к данным, полученным при контроле качества. Математическая статистика решает обратную задачу по отношению к теории вероятностей. Ее цель – на основе результатов наблюдений (измерений, анализов, испытаний, опытов) получить выводы о вероятностях, лежащих в основе вероятностной модели. Например, на основе частоты появления дефектных изделий при контроле можно сделать выводы о вероятности дефектности (см. теорему Бернулли выше). На основе неравенства Чебышева делались выводы о соответствии частоты появления дефектных изделий гипотезе о том, что вероятность дефектности принимает определенное значение.

Таким образом, применение математической статистики опирается на вероятностную модель явления или процесса. Используются два параллельных ряда понятий – относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, «находятся в головах исследователей», относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин «генеральная совокупность» используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют «анализ данных». По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик – вот суть вероятностно-статистических методов принятия решений.

Подчеркнем, что логика использования выборочных характеристик для принятия решений на основе теоретических моделей предполагает одновременное использование двух параллельных рядов понятий, один из которых соответствует вероятностным моделям, а второй – выборочным данным. К сожалению, в ряде литературных источников, обычно устаревших либо написанных в рецептурном духе, не делается различия между выборочными и теоретическими характеристиками, что приводит читателей к недоумениям и ошибкам при практическом использовании статистических методов.

Предыдущая